Grundlagenforschung zu Craniosacraler Therapie

Systematische Übersichtsarbeiten (Reviews):

1. Systematischer Review über die Physiologie der Cranialen Osteopathie

Zitation	Ferguson A: A review of the physiology of cranial osteopathy. J Osteopath Med 2003, 6(2): 74-84.
Abstract	The models generally used to explain the practice of cranial osteopathy have not been supported by reliable research. This paper reviews and explores the relevant physiology and finds much to advance knowledge in this field. Arterial vasomotor waves have a frequency similar to reports of cranial rhythmic impulses; these are controlled by the sympathetic nervous system. Thermoregulation can reverse venous flow through emissary veins of the skull. Cerebrospinal fluid is circulated by arterial pulsations and is partially drained via the cribiform plate into nasal and cervical lymphatics. A model for the practice of cranial osteopathy based on well-researched physiology is proposed, and some clinical implications outlined. Some reasons for poor interobserver agreement in palpatory studies are discussed. This paper should provide a basis for informed research in this subject in the future.

2. Systematischer Review über Craniosacrale Therapie

Zitation	Green C, Martin CW, Bassett K, Kazanjian A: A systematic review of craniosacral therapy:
	biological plausibility, assessment reliability and clinical effectiveness. Complementary
	<u>Therapies in Medicine, 1999, 7(4), 201-207.</u>
Zitation	Green C, Martin CW, Bassett K, Kazanjian A: A Systematic Review and Critical Appraisal of
	the Scientific Evidence on Craniosacral Therapy. Vancouver: British Columbia Office of
	Health Technology Assessment, 1999.
Zusammen-	Methodik: Um die biologische Plausibilität, diagnostische Reliabilität und klinische
fassung	Wirksamkeit der CST zu beurteilen, wurde eine systematische Literaturrecherche in
	internationalen medizinischen Datenbanken (Medline, Embase, Healthsstar, Mantis, Amed,
	Scisearch, Biosis) bis einschließlich Februar 1999 durchgeführt.
	Ergebnisse: Zu den biologischen Grundlagen der CST wurden folgende wissenschaftliche
	gesicherte Nachweise gefunden: Studien belegen die Bewegung bzw. rhythmische Pulsation
	des zerebrospinalen Liquors unabhängig vom Herz- oder Atemrhythmus. Die Existenz des
	craniosacralen Rhythmus konnte durch Enzephalographie, Myelographie und MRT sichtbar
	gemacht werden. In Studien konnte jedoch nicht gezeigt werden, dass die diagnostische
	Palpation des craniosacralen Rhythmus zwischen mehreren Therapeuten übereinstimmend
	möglich ist. Darüber hinaus bestätigen einige wenige Studien die Theorie, dass die Schädel-
	knochen bis ins Erwachsenenalter hinein beweglich bleiben. Jedoch gibt es keine Studien,
	die zeigen, dass die Manipulation der Schädelknochen durch manuelle Techniken möglich
	ist. Zudem fanden die Autoren nur sehr begrenzte Evidenz, dass Blockaden der Schädel-
	knochen oder Restriktionen im craniosacralen Flüssigkeitssystem kausal mit Gesundheits-
	beeinträchtigungen zusammenhängen. Zur Effektivitätsbeurteilung konnten nur 7 Beobach-
	tungsstudien mit schlechter methodischer Qualität herangezogen werden, was das geringste
	Evidenzlevel darstellt. In einer Studie (<u>Greenman et al., 1995</u>) wurden 3 Fälle mit Neben-
	wirkungen der CST berichtet.
	Bewertung: Der Review erfüllt alle Qualitätskriterien für systematische Übersichtsarbeiten.
	Er bildet den Forschungsstand bis 1999 ab.

Weitere Studien:

1. Die Verbindung zwischen Dura Mater und Muskulatur: Evidenz für eine myodurale Brücke

region (Hack et al. [1995] Spine 20:2484-2486). This structure, the so-called "myodural bridge," has yet to be included in any of the American anatomy textbooks or dissection guides commonly used in medical education. This direct anatomic link between the musculoskeletal system and the dura mater has important ramifications for the treatment	Zitation	Kahkeshani K, Ward PJ: Connection between the spinal dura mater and suboccipital
Abstract A connective tissue link between the spinal dura mater and the rectus capitis posterior minor muscle was first described in 1995 and has since been readily demonstrated via dissection, magnetic resonance imaging, and plastinated cross-sections of the upper cervic region (Hack et al. [1995] Spine 20:2484-2486). This structure, the so-called "myodural bridge," has yet to be included in any of the American anatomy textbooks or dissection guides commonly used in medical education. This direct anatomic link between the musculoskeletal system and the dura mater has important ramifications for the treatment		musculature: evidence for the myodural bridge and a route for its dissection - a review.
minor muscle was first described in 1995 and has since been readily demonstrated via dissection, magnetic resonance imaging, and plastinated cross-sections of the upper cervic region (Hack et al. [1995] Spine 20:2484-2486). This structure, the so-called "myodural bridge," has yet to be included in any of the American anatomy textbooks or dissection guides commonly used in medical education. This direct anatomic link between the musculoskeletal system and the dura mater has important ramifications for the treatment		Clinical anatomy (New York, NY) 2012, 25(4): 415-422.
chronic cervicogenic headache. This article summarizes the anatomic and clinical research literature related to this structure and provides a simple approach to dissect the myodural bridge and its attachment to the posterior atlanto-occipital membrane/spinal dura mater complex and summarizes the case for its possible inclusion in medical anatomy curricula.	Abstract	A connective tissue link between the spinal dura mater and the rectus capitis posterior minor muscle was first described in 1995 and has since been readily demonstrated via dissection, magnetic resonance imaging, and plastinated cross-sections of the upper cervical region (Hack et al. [1995] Spine 20:2484-2486). This structure, the so-called "myodural bridge," has yet to be included in any of the American anatomy textbooks or dissection guides commonly used in medical education. This direct anatomic link between the musculoskeletal system and the dura mater has important ramifications for the treatment of chronic cervicogenic headache. This article summarizes the anatomic and clinical research literature related to this structure and provides a simple approach to dissect the myodural bridge and its attachment to the posterior atlanto-occipital membrane/spinal dura mater

2. Schwindel: Ein craniosacrales Model

Zitation	Christine DC: Temporal bone misalignment and motion asymmetry as a cause of vertigo: the craniosacral model. Alternative therapies in health and medicine 2009, 15(6): 38-42.
Abstract	Objective: To describe dysfunction of the craniosacral system, particularly temporal bone
	motion asymmetry, as a cause of vertigo and to suggest a new perspective on research,
	diagnosis, and treatment.
	<u>Data Sources:</u> A database search was conducted using Medline, Cinhal; Health Sources:
	Nursing/Academic Edition; and the Internet. Keywords: vertigo diagnosis and treatment,
	craniosacral therapy, temporal bones, cranial bone mobility, Upledger, and
	temporomandibular disorders.
	Study Selection: Articles that most clearly described a relationship between cranial bone
	misalignment and vertigo were selected for review.
	Conclusion: Clinical experience suggests that craniosacral therapy is a powerful evaluative
	and treatment modality for vertigo patients who have not found relief from medical
	treatments. A narrative review of the literature describes and supports a theoretical link
	between dysfunction of the craniosacral system and vertigo. Dysfunction of the craniosacral
	system may include osseous, dural membrane, and fascial restrictions leading to asymmetric
	temporal bone movement and hence vertigo. Clinical trials are necessary not only to verify
	that craniosacral therapy is an effective treatment but also to determine the full range of
	symptoms and medical diagnoses for which craniosacral therapy is beneficial.

3. Der Prozess des faszialen Unwinding

Zitation	Minasny B: Understanding the process of fascial unwinding. International journal of therapeutic massage & bodywork 2009, 2(3): 10-17.
Abstract	Background: Fascial or myofascial unwinding is a process in which a client undergoes a spontaneous reaction in response to the therapist's touch. It can be induced by using specific techniques that encourage a client's body to move into areas of ease. Unwinding is a popular technique in massage therapy, but its mechanism is not well understood. In the absence of a scientific explanation or hypothesis of the mechanism of action, it can be

interpreted as "mystical."

<u>Purpose</u>: This paper proposes a model that builds on the neurobiologic, ideomotor action, and consciousness theories to explain the process and mechanism of fascial unwinding. <u>Hypothetical Model</u>: During fascial unwinding, the therapist stimulates mechanoreceptors in the fascia by applying gentle touch and stretching. Touch and stretching induce relaxation and activate the parasympathetic nervous system. They also activate the central nervous system, which is involved in the modulation of muscle tone as well as movement. As a result, the central nervous system is aroused and thereby responds by encouraging muscles to find an easier, or more relaxed, position and by introducing the ideomotor action. Although the ideomotor action is generated via normal voluntary motor control systems, it is altered and experienced as an involuntary response.

<u>Conclusions:</u> Fascial unwinding occurs when a physically induced suggestion by a therapist prompts ideomotor action that the client experiences as involuntary. This action is guided by the central nervous system, which produces continuous action until a state of ease is reached. Consequently, fascial unwinding can be thought of as a neurobiologic process employing the self-regulation dynamic system theory.

4. Ein Model des Primären Respiratorischen Rhythmus

Zitation	Lee RP: The Living Matrix: a Model for the Primary Respiratory Mechanism. EXPLORE: The
	Journal of Science and Healing 2008, 4(6): 374-378.
Abstract	Presented here is a physiological model for the primary respiratory mechanism, palpable
	fluctuations in the tissues to which practitioners of cranial manipulation, visceral manipula-
	tion, and lymphatic drainage attribute healing effects. According to this model, the primary
	respiratory mechanism initiates metabolism and assures nutrients and waste products an
	efficient transit through the extracellular space. The extracellular matrix is an open, unstable
	system prone to changes of ionic concentration and macromolecular organization. The cells
	imbedded in the extracellular matrix are functionally coupled with it through integrins,
	receptors within the cell membrane. Integrins convey mechanotransduction: activation of
	intracellular enzyme systems and DNA through changes in extracellular electromechanical
	information. Utilizing the primary respiratory mechanism, clinicians effect improvements in
	varied conditions, some of which are reviewed.

5. Die Aufzeichnung des Craniosacralen Rhythmus

Zitation	Nelson KE, Sergueef N, Glonek T: Recording the rate of the cranial rhythmic impulse. The
	Journal of the American Osteopathic Association 2006, 106(6): 337-341.
Abstract	The rate of the cranial rhythmic impulse can be obtained by both palpation and instrument-
	tation. However, the literature has reported higher rates obtained by instrumentation com-
	pared with palpation. The cranial rhythmic impulse has been demonstrated to be synchro-
	nous with the Traube-Hering oscillation, measured in blood flow velocity. The current study
	demonstrates that physicians tend to palpate the cranial rhythmic impulse and Traube-
	Hering oscillation in a 1:2 ratio. This finding provides an explanation for the difference
	between palpated and instrumentally recorded rates for the cranial rhythmic impulse.

6. Craniale Manipulation (CV-4 Technik) verändert die Aktivität des sympathischen Nervensystems

Zitation	Cutler MJ, Holland BS, Stupski BA, Gamber RG, Smith ML: Cranial manipulation can alter
	sleep latency and sympathetic nerve activity in humans: a pilot study. Journal of Alternative
	and Complementary Medicine 2005, 11(1):103-108.
Abstract	Objective: To determine if cranial manipulation is associated with altered sleep latency.
	Furthermore, we investigated the effects of cranial manipulation on muscle sympathetic
	nerve activity (MSNA) as a potential mechanism for altered sleep latency.
	<u>Design:</u> Randomized block design with repeated measures.
	Setting: The Integrative Physiology and Manipulative Medicine Departments, University of
	North Texas Health Science Center, Fort Worth, TX.
	Subjects: Twenty (20) healthy volunteers (12 male, 8 female; age range, 22-35 years)
	participated in this investigation.
	Interventions: Subjects were exposed to 3 randomly ordered treatments: compression of
	the fourth ventricle (CV4), CV4 sham (simple touch), and control (no treatment).
	Outcome Measures: Sleep latency was assessed during each of the treatments in 11
	subjects, using the standard Multiple Sleep Latency Test protocol. Conversely, directly
	recorded efferent MSNA was measured during each of the treatments in the remaining 9
	subjects, using standard microneurographic technique.
	Results: Sleep latency during the CV4 trial was decreased when compared to both the CV4
	sham or control trials (p < 0.05). MSNA during the CV4-induced temporary halt of the cranial
	rhythmic impulse (stillpoint) was decreased when compared to prestillpoint MSNA
	(p < 0.01). During the CV4 sham and control trials MSNA was not different between CV4
	time-matched measurements (p > 0.05). Moreover, the change in MSNA prestillpoint to
	stillpoint during the CV4 trial was different compared to the CV4 sham and control trials
	(p < 0.05). However, this change in MSNA was similar between the CV4 sham and control
	trials (p > 0.80).
	Conclusions: The current study is the first to demonstrate that cranial manipulation, speci-
	fically the CV4 technique, can alter sleep latency and directly measured MSNA in healthy
	humans. These findings provide important insight into the possible physiologic effects of
	cranial manipulation. However, the mechanisms behind these changes remain unclear.

7. Radiographische Evidenz für die Beweglichkeit der Kopfknochen

Zitation	Oleski SL, Smith GH, Crow WT: Radiographic evidence of cranial bone mobility. Cranio: the
	journal of craniomandibular practice 2002, 20(1): 34-38.
Abstract	The purpose of this retrospective chart review was to determine if external manipulation of the cranium alters selected parameters of the cranial vault and base that can be visualized and measured on x-ray. Twelve adult patient charts were randomly selected to include patients who had received cranial vault manipulation treatment with a pre- and post-treatment x-ray taken with the head in a fixed positioning device. The degree of change in angle between various specified cranial landmarks as visualized on x-ray was measured. The mean angle of change measured at the atlas was 2.58 degrees, at the mastoid was 1.66 degrees, at the malar line was 1.25 degrees, at the sphenoid was 2.42 degrees, and at the temporal line was 1.75 degrees. 91.6% of patients exhibited differences in measurement at 3 or more sites. This study concludes that cranial bone mobility can be documented and measured on x-ray.

8. Entrainment und der Craniosacrale Rhythmus

Zitation	McPartland JM, Mein EA: Entrainment and the cranial rhythmic impulse. Alternative
	therapies in health and medicine 1997, 3(1): 40-45.
Abstract	Entrainment is the integration or harmonization of oscillators. All organisms pulsate with myriad electrical and mechanical rhythms. Many of these rhythms emanate from synchronized pulsating cells (eg, pacemaker cells, cortical neurons). The cranial rhythmic impulse is an oscillation recognized by many bodywork practitioners, but the functional origin of this impulse remains uncertain. We propose that the cranial rhythmic impulse is the palpable perception of entrainment, a harmonic frequency that incorporates the rhythms of multiple biological oscillators. It is derived primarily from signals between the sympathetic and parasympathetic nervous systems. Entrainment also arises between
	organisms. The harmonizing of coupled oscillators into a single, dominant frequency is called frequency-selective entrainment. We propose that this phenomenon is the modus operandi of practitioners who use the cranial rhythmic impulse in craniosacral treatment. Dominant entrainment is enhanced by "centering," a technique practiced by many healers, for example, practitioners of Chinese, Tibetan, and Ayurvedic medicine. We explore the connections between centering, the cranial rhythmic impulse, and craniosacral treatment.

9. Untersuchungsergebnisse und latrogenese der Craniosacralen Therapie bei Patienten mit Schädel-Hirn-Trauma

Zitation	Greenman PE, McPartland JM: Cranial findings and iatrogenesis from craniosacral
	manipulation in patients with traumatic brain syndrome. The Journal of the American
	Osteopathic Association 1995, 95(3):182-188;191-192.
Abstract	Craniosacral findings were recorded for all patients with traumatic brain injury entering an
	outpatient rehabilitation program between 1978 and 1992. The average cranial rhythmic
	impulse was low in all 55 patients (average, 7.2 c/min). At least one cranial strain pattern
	was exhibited by 95%, and 87% had one or more bony motion restrictions. Sacral findings
	were similar to those in patients with low back pain. Although craniosacral manipulation has
	been found empirically useful in patients with traumatic brain injury, three cases of
	iatrogenesis occurred. The incidence rate is low (5%), but the practitioner must be prepared
	to deal with the possibility of adverse reactions.

